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Abstract 

Developed from Guye's "produit d'asym6trie" and formally similar to Ruch's chirality 
products, geometric cbirality products are functions purely of molecular shape, without 
reference to chemical characteristics. In their normalized versions, geometric chirality 
products have all the attributes'of a chirality measure, i.e. they are similarity in'~ariant 
and dimensionless in the interval [-  1, l]. An application to Boys' model of the tetrahedron 
is presented, and a detailed study of the results for triangular domains in E z is reported. 
According to this measure, the most chiral triangle is infinitely flat and infinitely 
skewed. The analysis leads to the paradoxical conclusion that the most chiral triangle 
is infinitesimally close to an achiral one. The results are compared with those obtained 
for an overlap measure of chirality, and the relationship between molecular models and 
measures of chirality is briefly discussed. 

1. Introduction 

In 1890, 100 years ago at this writing and only 16 years after van 't Hoff's and 
LeBel's revolutionary proposals to extend the structural formulas of  chemistry into 
three-dimensional space, Guye [1] introduced the first function designed to correlate 
a pseudoscalar property, i.e. optical rotation, with the molecular structure of a chiroid. 
Appropriately called "produit d'asymdtrie", this was the first example of a chirality 
function in chemistry. It was also the first attempt to quantify a chirality property. 

In this.paper, we show that, starting from Guye's chirality product, a function 
can be derived that we call geometric chirality product and that expresses the shape 
of geometric chiroids. We go on to illustrate this new concept by an analysis of 
triangular shapes from which it emerges that, according to this measure, the most 
chiral triangle is one that is infinitely flat and skewed. 

According to Guye [1], the chirality product P for a tetrahedral coordination 
skeleton, in which the angles subtended by the central carbon atom remain those of 
the regular tetrahedron (the "a-constraint", where a is the tetrahedral angle), is defined 
by eq. (1), where d,. is the perpendicular distance of the molecular center of mass to 
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the ith of six planes defined by each of the six edges and the center of  the tetrahedron. 
Thus, P(d)  is the product of  six terms: 

6 
P(d)  = I ' I  d i .  (1) 

i=1 
P(d)  may be expressed by eq. (2), where m 1, m2, m3, and m4 are four masses 

at the vertices of  the tetrahedron, separated by four distances l 1, l 2, l 3, and 14 from 
the central carbon atom [2]. For the special case in which all four distances are the 
same (l), i.e. in which the coordination skeleton is a regular tetrahedron, eq. (2) 
reduces to eq. (3): 

6 

sin a / 2  1 . . . 4  P(m,l)= ~i=lZ mi I il~I>j ( m i ~ - m j l j ) ,  (2) 

P(m)  
l sin a / 2  

4 
Y~ m i i=1 

6 
I 1...4 

il~> j ( m i - m ) )" (3) 

In the course of their systematic development of a general theory of chirality 
products, Ruch and coworkers [3, 4] defined a function Z(A) with reference to a model 
in which a set of n ligands is partitioned among the n sites of an achiral permutation 
skeleton, such as a regular tetrahedron. In this definition (eq. (4)), A is a transferable, 
ligand-specific, scalar parameter with a physical dimension, e.g. polarizability, or 
with geometrical properties: 

1. . .n 

Z(AI,&2 . . . . .  An) = 1-I ()~i- A)). (4) 
i>j 

The formal resemblance between the product terms in eqs. (3) and (4) is 
obvious on inspection: in both cases, the chirality polynomial of  lowest degree is an 
expansion of a determinant whose elements are ai) = m{-  1 or &{- 1 CVandermonde" 
determinant [3(b)]). However, a crucial condition on any chirality function is that it 
must vanish identically if the model is achiral, and P(m)  fails to meet this test: as 
first pointed out by Walden [5] in a trenchant critique of Guye's chirality product, 
and as would be expected on grounds of symmetry alone, compounds such as 
dimethyl O-acetyl malate (CH3OOCCH(OCOCH3)CH2COOCH3) are optically active 
even though two of the ligands attached to the central carbon atom, OCOCH 3 and 
COOCH3, have the same mass. The choice of & = m therefore seems particularly 
unfortunate, not only because Guye's model does not conform with modem theories 
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of optical activity [6] but also because the ligands are represented as point masses, 
so that P(m)  fails to take into account different distributions of  masses within the 
ligands. 

2. Geometr ic  chirali ty products  as expressions of shape 

If the four point-masses in Guye's model are taken to be all the same, then eq. 
(2) reduces to eq. (5), where c = (sin a/2)6/46: 

1. . .4  

P ( l ) = c 1-I ( li - lj ). 
i>j 

(5) 

Now P(I) is a function of  symmetry alone and behaves properly: it vanishes 
in all cases but one, that of the asymmetric tetrahedron. Because of their purely 
geometric character, functions such as P(l) will hereafter be called geometric chirality 
products .  

Only five tetrahedr~d symmetries, T a, C3~,, C2~, C s, and C 1, are possible for P(I) 
under the a-constraint. These are the same five symmetries that result from different 
ligand partitions on a regular tetrahedral permutation skeleton [7]. This mapping 
finds its fullest expression in the following construct. Imagine a regular tetrahedron 
t with center-to-vertex distances r inscribed within a tetrahedron T modeled by P(l),  
so that the center of  t coincides with the central carbon atom of  T and the r's of  t 
are coextensive with the l's of T. Because t is inscribed within T, l -  r _> 0. The four 
line segments l - r are therefore the geometric equivalents ofligands on a Ta permutation 
skeleton, and the chirality product for this construct is accordingly given by the 
formulation of  eq. (5) as eq. (6): 

1. . .4  

P(l)  = c I-I [(li - r ) -  (~ - r)]. (6) 
i>j 

Ruch [30)] has previously pointed out that the ligand parameters X may describe 
a geometrical property of the ligands, which he has likened to the diameters of  
spheres centered at the vertices of achiral coordination skeletons. The present construct, 
with ~t. = l - r, evokes a similar image. In short, as a chirality product, P(l) fully accords 
with Ruch's theory [3] even though there is no obvious correlation of  l -  r with any 
pseudoscalar observable. Furthermore, most important of all for what is to follow, 
chirality products  such as P(l) express the shapes o f  geometric chiroids. 

A geometric chirality product with significantly different scope may be constructed 
by taking the six edges of the tetrahedron as the variable parameters. Let eij denote 
the length of an edge, i.e. the shortest distance between the ith and j th  vertices. There 
are 6 ( 6 -  1)/2 = 15 combinations of  differences in edge lengths, 12 of  which are 
differences in the lengths of adjacent edges, e.g. ( e i j -  ei~). The remaining three, which 
are differences in the lengths of the three pairs of non-adjacent edges, e.g. (e#.- ek,,,), 



246 A.B. Buda et al., Geometric chirality products 

are unsuitable as factors in a chirality product because all three would be zero under 
D 2 symmetry, and two of the three under C 2 symmetry, so that the chirality product 
would vanish for these chiral tetrahedra. These three differences must therefore be 
excluded. Because this chirality product P(e)  circumvents the a-constraint, it includes 
D 2 and C 2 symmetries, although it fails for C 1 tetrahedra with adjacent edges of equal 
length. P(e)  consists of twelve rather than six terms, although there are redundancies 
for D 2 and C 2 tetrahedra. Equation (7) shows three of the twelve terms, i.e. those for 
the triangular face ijk: 

P(e)  = (e i i  - e i k )  (e j i  - ejk ) (eki - e~i ) . . . .  (7) 

An alternative approach involves taking the length of each edge to be the 
sum of two vertex-specific segments (ei j= v i + vj)  so that, for example, e i k -  ejk  
= ei,, - e j m  -~ 7.) i - " o j .  In terms of this approach, tetrahedra with two adjacent edges 
of equal length have to be achiral, and C 1 tetrahedra with such edges are ipso facto 
excluded. However, the new chirality product (eq. (8)) can no longer accommodate 
D 2 and C 2 symmetries: 

1...4 

p ( v )  = I-I  ( v i  - v j  )2. (8) 
i>j 

The first application of this type of chirality product to chemistry was provided 
more than 50 years ago by Boys [8], who used it as a measure of optical rotatory 
power. In Boys' model, four spheres are brought into mutual contact and their centers 
form the vertices of a tetrahedron. The length of each edge of the tetrahedron therefore 
equals the sum of the radii of two spheres. Clearly, the model is chiral only if the 
tetrahedron is asymmetric, The essentially geometric character of his chirality product 
was recognized by Boys, who remarked that the variables "were termed the radii of 
repulsion of the radicals, but rather than representing any exact physical quantity they 
must be regarded more as parameters used to express the shape of the molecule". 

3. Similarity invariance and bounds on geometric measures of chirality 

As previously discussed [9], geometric measures of chirality should be similarity 
invariant: chirality is measured by shape and not by size, and similarity invariance 
eliminates the factor of size. 

However, none of the chirality products P(x)  discussed so far meet the criterion 
of similarity invariance. Although these functions [3,4,8], which we call chemical  
chirality products ,  can be made similarity invariant in an algebraic sense, it is not 
clear whether such an approach is chemically meaningful. On the other hand, this 
problem is not beyond remedy for geometric chirality products. 

Consider, for example, the chirality products given by eq. (8) for two similar 
but non-isometric tetrahedra T and T'. It is obvious by inspection that if the vertex- 
specific segments v and v' in the two tetrahedra are related by a scaling factor/.t, 
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so that v ' =  #v, then P ' ( v ' ) =  #12p(v). Division of  each term in P and P" by 
v k = max{v  i, vj} and v£= #v  k, respectively, results in a chirality product Z(v)  
(eq. (9)) that is the same for T and T '  and that has the proper attributes of  a geometric 
chirality measure [9]: like P(v), Z(v)  vanishes identically for achiral tetrahedra 
(v i = vj) and is oppositely signed for enantiomorphous tetrahedra but, unlike P(v), 
Z(v)  is also similarity invariant, dimensionless, and bounded in the range [-1 ,  1]. The 
absolute value of  Z(V) is therefore a suitable measure of  the degree of chirality of 
tetrahedra [9] in terms of a vertex parameter v, such as the radii of four mutually 
touching spheres in Boys' model [8]: 

1 ...4 I ?3 i -- 7.)j / 2 

Z(v)  = l~. • ~. max{--V-~/ivj } ) . (9) t>j  

We next draw attention to an important feature of eq. (9): the bounds of the 
range of  the normalized function [ -1 ,  1] are only approachable as a limit. That is, 
Z(v)  = + 1 only in the limit of vj/max {v i - v j }  = 0, i.e. when the radii of the spheres 
in Boys' model  [8] have shrunk to the vanishing point, along with the tetrahedron 
itself. This is consistent with the non-compactness of the space of similarity equivalent 
tetrahedra [9]. Accordingly, a "most chiral" object may not be attainable if the 
measure is a similarity invariant chirality product. 

4. A chirality product for t r iangles  

4.1. CHOICE OF A MEASURE 

Whenever molecules are modeled by geometric objects, molecular shapes - a 
common theme in structural chemistry - are reflected in the shapes of the corresponding 
geometric representations. As we saw, geometric chirality products are expressions 
of chiral shapes, and a study of  the corresponding polynomials is therefore of 
obvious relevance to problems in structural chemistry. A study of geometric 
chirality products such as Z(V) would be of particular interest, since the asymmetric 
tetrahedron has played a special role in organic chemistry that dates back to the days 
of van 't Hoff [7]. However, the complexity of the polynomials involved is certain 
to obscure basic features that are easily seen in the far more tractable third-order 
polynomials of chirality products for triangles. We therefore opted for a study of  
these two-dimensional counterparts of tetrahedra. 

Chirality product P(e) for triangles (eq. (10)), where a, b, and c are the lengths 
of the sides, is analogous to the chirality product for tetrahedra given by eq. (7). Like 
eq. (7), eq. (10) is not subject to the two-dimensional analog of an a-constraint, i.e. 
to the constraint that none of the internal angles in the triangle can exceed 2~r/3 radians: 

P(e) = (a - b)(b - c)(c - a). (10) 

Division by abc transforms P(e) into z (e )  (eq. (11)): 
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z ( e )  = (1 - b/a)(1 - c/b)(1 - a/c). (11) 

All the conditions for a measure of  chirality [9] are met by this chirality 
product, which (a) is a continuous and real-valued function that vanishes identically 
if, and only if, any two sides of  the triangle are equal, i.e. if, and only if, the triangle 
is achiral in E 2 (isosceles or equilateral), (b) gives values that are equal in magnitude 
but opposite in sign for enantiomorphous triangles, and (c) is similarity invariant, 
bounded, normalized, and dimensionless in the interval [ -1 ,  1]. While the range of  
z (e )  is bounded, it is nonetheless open since the space of  similarity equivalent ovals 
is not compact, and the bounds of  any measures defined on this space may thus not 
be attainable. It follows that a most chiral triangle, corresponding to z (e )  = +1, may 
not exist, but may only be approached as a limit. 

4.2. MAPPING TRIANGULAR SHAPES 

A minimum of two independent parameters, tor example two internal angles, 
is needed to define the shape of  a triangle. These are the coordinates of  a point in 
a two-dimensional "shape space". The shape space of our choice is an xy-coordinate 
system in which side c opposite vertex C of a triangle ABC coincides with the x-axis, 
and in which the center of  c is fixed at the origin. Because z (e )  is similarity invariant 
and because our concern is with shape and not with size, we may therefore take 
c = 1 without loss of  generality, so that the coordinates of  A, B, and C are (1/2, 0), 
( -1 /2 ,  0), and (x, y), respectively (fig. 1). Accordingly, the coordinates of  C define 

B (-1/2, 0) 

Y 
C (x, y) 

A (1/2, 0) 

X 
D, 

Fig. 1. Coordinate system and labeling convention for the space of triangles 
in which a, b, and c, in that order, are arranged in a clockwise manner. 

the shape of the triangle. We shall adhere to the labeling convention in fig. 1 throughout 
the following discussion. 

Points in the xy plane that represent isosceles triangles lie on one of three nodal 
curves, depending on whether a = b (eq. (12)), a = c (eq. (13)), or b = c (eq. (14)): 
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x = O, (12) 

(x + 1/2) 2 + y2 = 1, (13) 

(x - 1/2) 2 + y2 = 1. (14) 

Figure 2 depicts the two nodal curves that correspond to eqs. (13) and (14) as 
semicircles with radius c = 1 centered at ( -  1/2, 0) and (1/2, 0), respectively. These 
curves intersect the third nodal curve, i.e. the y-axis (eq. (12)), at (0, 4-3/2), the point 
that represents the equilateral triangle. The three nodal curves divide the xy plane into 

c < a < b  

a=c 

(-3/2, 0) (-1/2, 0) 

a = blY (O,l "~r3/2) 
b = c  

(0, O) (I/2, O) (3/2, O) 

c < b < a  

Fig. 2. The segments of shape space labeled 
according to the convention in fig. 1. 

X II 

six segments, each of  which represents all chiral (scalene) triangles that have in 
common a given inequality of sides, e.g. the triad a < b < c. A shown in fig. 2, each 
segment is characterized by one of six triads that result from the permutation of  the 
three labels in the inequality. Under the labeling convention mentioned above, these 
six segments fall into two sets representing enantiomorphous triangles: {a < b < c, 
b < c < a , c < a < b }  and { a < c < b , b < a < c , c < b < a } . F o r e x a m p l e ,  achiral  
triangle whose shape is defined by the two angles re/2 and 7r/6 is represented six 
times in fig. 2: by positions of  vertex C at ( -  1/2, ",/-3), ( -  1/4, ,~/4),  and (1/2, l/q-3) 
in segments labeled c <  a < b ,  a < b <  c, and b <  c < a ,  respectively, and at 
(1/2, -43), (1/4, 4-3/4), and ( -1 /2 ,  l/q-3) in segments labeled c < b < a, b < a < c, 
and a < c < b, respectively. The triangles in the first set are enantiomorphs of those 
in the second set; although the three triangles within each set differ in size, they have 
the same shape, i.e. they are not isometric but they are similar. 

The six segments in fig. 2 may therefore be reduced to two, e.g. those in which 
c is taken to be the longest side. All triangular shapes are then accommodated, 
without redundancy, within two segments, a < b < c and b < a < c. In fig. 2, these 
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segments are contained within a gothic arch whose apex is at (0, 43/2) and which 
is bounded on two sides by arcs of length ~r/3 that belong to the two nodal semicircles 
and on the third by the x-axis. This gothic arch is a unique representation of  our 
shape space. All isosceles triangles with a = c or b = c are represented by points on 
the two arcs, while those with a = b are represented by points on the y-axis. All points 
that lie on the x-axis represent degenerate triangles, i.e. triangles whose three vertices 
are collinear, and are excluded from the set of  triangles under consideration. The 
shape space within the gothic arch is therefore bounded on all three sides, but it is 
not closed at y = 0. 

4.3, CHIRALITY PRODUCTS AND TRIANGULAR SHAPES 

The dependence of the chirality product x ( e ) o n  triangular shape is con- 
veniently explored by examining the behavior of x(e) as x varies for a given value 
of y within the bounds of  the two arcs, i.e. within the limits of  x = 1/2 - "]-i - y2 
and x = - ( 1 / 2  - ~[1 - y2). Since c = 1, this corresponds to an examination of  z (e)  
as a function of  triangular shape for all triangles with a given area y/2. 

Figure 3 displays plots of x(e) versus x, computed for selected values of  the 
altitude y. For each of  the two enantiomorphous sets of  triangles a < b < c and 
b < a < c, all values of  z(e)  have the same sign, positive and negative, respectively, 
regardless of  triangular shape. Within the conceptual framework developed by Ruch 
and coworkers [3], z(e)  may therefore be characterized as a homochirality function: 
the two sets are mutually heterochiral, all triangles within a given set are homochiral 
(i.e. chirally related), the boundary between and around the two sets is the set of  
achiral triangles, and the dimension of this boundary is n - 1, where n is the dimension 
of the space of the chiral triangles [4d]. 

We find that for each value of  y, z(e)  assumes a maximum value Zmax which 
is the same in magnitude but oppositely signed for the two sets. It is obvious on 
inspection of fig. 3 that with decreasing values of y, Xmax increases in magnitude and 
at the same time the corresponding value of  x is shifted in the direction of  
the bounds at x = -+ 1/2. In the limit of y = O, z(e)  becomes the chirality product 
of a linear array in which c is made up of  two segments a and b. Substitution 
of a + b = c =  1 in e q . ( l l )  y i e l d s z ( e ) = b - a  and, if a = 0 . 5  + x a n d b = 0 . 5 - x ,  
it follows that z(e)  = - 2 x  in the interval ( -1 /2 ,  1/2). Thus, z(e)  in the limit of 
y = 0 becomes a measure of one-dimensional chirality. 

As suggested in fig. 3, the magnitude of  Zmax is negligible for values of  y 
greater than 0.5,  becoming significant only for triangles that are both extremely flat, 
i.e. for values of y close to zero, and extremely skewed, i.e. for values of  x close 
to :t: 1/2. Within this domain, as the triangle becomes more chiral, two of its sides 
become more and more similar to each other, and the vertex C representing the triangle 
with Xmax shifts towards the arched borders of  the shape space. In the limit, the most 
chiral triangle is infinitely close to an achiral one. This paradox can be understood 
within the confines of  the measure of chirality adopted here (see below). In the limit 
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0.8 

0,6 

0.4 

0.2 

z(e) 0 

-02 

-0.4 

-0.6 

-0.8 

0.15 

50 -0.40 -0.30 -0.20 -0A0 0.00 

--,,- a < b < c  - 

: ...... b < a < c  - 

-1 

Fig .  3. Calculated plots of the chirality product z(e) for triangles versus x for the 
unique segments {a < b < c, b < a < c} as a function of x for selected values 
of the altitude y. The altitudes are indicated by the numbers above the curves. 

X 

of  x = + 1/2 and ,~max = :gl, vertex C coincides with A or B. The most chiral triangle 
is therefore one that is infinitely fiat and skewed, with an altitude y that is arbitrarily 
close to zero, and for which a/c = 1 and b/c  = 0, or b/c  = 1 and a/c = O. 

5. Geometr i c  chirality measures  and molecular  models  

A result similar to the one above was recently obtained in a study [9, 10] in 
which the chirality o f  triangular domains in the Euclidean plane E 2 w a s  gauged by 
superimposing enantiomorphs T and T' in such a way that their intersection T* = T n T' 
was maximized.  The chirality measure was defined as 

z ( T )  = 1 - [ T * ] / [ T ] ,  

where [T*] and [T] denote the areas of  the corresponding triangular domains. In that 
study, it was found that the most chiral triangular domain is one with sides a, b, and 
c whose  altitude h from side c is arbitrarily close to zero and for which b/c  = 1 / ~  
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and a/c = 1 - l/q2- in the limit of h = 0. That is, according to this overlap measure 
the most chiral triangular domain is beyond reach and is arbitrarily close to a line 
segment. In contrast to the geometric chirality product, the overlap measure does not 
exhibit the paradox discussed in the previous section: in this limit, the line segment 
has [T] = 0 and z(T)  is thus undefined. Therefore, the ultimate (degenerate) triangle 
cannot be discussed within the confines of this overlap measure. 

There are some other important differences in the results of  the two studies. 
As we saw, although both measures lead to the conclusion that the most chiral 
general triangle is infinitely flat, the two measures give different relationships 
for the sides of that ultimate triangle. Equally telling are the differences in the results 
for the most chiral right triangle. Within the gothic arch, all right triangles are 
represented by points on a semicircle of radius 1/2 that is centered at (0, 0). Consequently, 
the height of  the right triangle is tied to its skewedness, and the maximum degree 
of chirality for the points on this locus occurs at x = + 0.40, y = 0.30, with I z (e)  [ = 0.074. 
By contrast, the overlap measure yields as the most chiral right triangle [9] one 
whose shape is given by 2 cos3c~ = 1 and whose degree ofchirali ty (21/3 - 1)/(21/3 + 1) 
= 0.115, while that of the most chiral general triangle is (21/2 - 1)/(21/2 + 1) = 0.172. 

It should be emphasized that the overlap measure demands a triangle with a 
uniform and continuous distribution of points (triangular domain), whereas the chirality 
product measure requires only a set of three discrete points (vertices). Although the 
geometric chirality product can be applied both to triangular domains and to triangles 
defined as a set of  three vertices, the overlap measure can only be used with the 
former. The distinction between these two approaches carries over to geometric 
models of molecules. Space-filling (CPK) models descr i~  molecular shape by assigning 
van der Waals radii to each atom. The overlap measure of  chirality requires an 
integration of  the molecular volume and can therefore be applied to such models only 
on the assumption that the distribution of  points inside the volume is uniform and 
continuous. Therefore, this method cannot be applied to molecular models that localize 
matter in discrete regions, and the geometric chirality product is consequently the 
more appropriate one for such models. As is evident from this discussion, quantification 
of  molecular chirality crucially' depends" on the model employed and on the measure 
of  chirality associated with that model. 
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